Enter a problem...
Linear Algebra Examples
4+4i4+4i
Step 1
Calculate the distance from (a,b) to the origin using the formula r=√a2+b2.
r=√42+42
Step 2
Step 2.1
Raise 4 to the power of 2.
r=√16+42
Step 2.2
Raise 4 to the power of 2.
r=√16+16
Step 2.3
Add 16 and 16.
r=√32
Step 2.4
Rewrite 32 as 42⋅2.
Step 2.4.1
Factor 16 out of 32.
r=√16(2)
Step 2.4.2
Rewrite 16 as 42.
r=√42⋅2
r=√42⋅2
Step 2.5
Pull terms out from under the radical.
r=4√2
r=4√2
Step 3
Calculate reference angle θ̂=arctan(|ba|).
θ̂=arctan(|44|)
Step 4
Step 4.1
Divide 4 by 4.
θ̂=arctan(|1|)
Step 4.2
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
θ̂=arctan(1)
Step 4.3
The exact value of arctan(1) is π4.
θ̂=π4
θ̂=π4
Step 5
The point is located in the first quadrant because x and y are both positive. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Quadrant 1
Step 6
(a,b) is in the first quadrant. θ=θ̂
θ=π4
Step 7
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,…,n-1
Step 8
Step 8.1
Combine (4√2)12 and (π4)+2πk2.
cis(4√2)12((π4)+2πk)2
Step 8.2
Combine c and (4√2)12((π4)+2πk)2.
isc((4√2)12((π4)+2πk))2
Step 8.3
Combine i and c((4√2)12((π4)+2πk))2.
si(c((4√2)12((π4)+2πk)))2
Step 8.4
Combine s and i(c((4√2)12((π4)+2πk)))2.
s(i(c((4√2)12((π4)+2πk))))2
Step 8.5
Remove parentheses.
Step 8.5.1
Remove parentheses.
s(i(c((4√2)12(π4+2πk))))2
Step 8.5.2
Remove parentheses.
s(i(c(4√2)12(π4+2πk)))2
Step 8.5.3
Remove parentheses.
s(i(c(4√2)12)(π4+2πk))2
Step 8.5.4
Remove parentheses.
s(ic(4√2)12(π4+2πk))2
Step 8.5.5
Remove parentheses.
s(ic(4√2)12)(π4+2πk)2
Step 8.5.6
Remove parentheses.
s(ic)(4√2)12(π4+2πk)2
Step 8.5.7
Remove parentheses.
sic(4√2)12(π4+2πk)2
sic(4√2)12(π4+2πk)2
sic(4√2)12(π4+2πk)2
Step 9
Step 9.1
Apply the product rule to 4√2.
k=0:412√212cis((π4)+2π(0)2)
Step 9.2
Rewrite 4 as 22.
k=0:(22)12√212cis((π4)+2π(0)2)
Step 9.3
Apply the power rule and multiply exponents, (am)n=amn.
k=0:22(12)√212cis((π4)+2π(0)2)
Step 9.4
Cancel the common factor of 2.
Step 9.4.1
Cancel the common factor.
k=0:22(12)√212cis((π4)+2π(0)2)
Step 9.4.2
Rewrite the expression.
k=0:2√212cis((π4)+2π(0)2)
k=0:2√212cis((π4)+2π(0)2)
Step 9.5
Evaluate the exponent.
k=0:2√212cis((π4)+2π(0)2)
Step 9.6
Multiply 2π(0).
Step 9.6.1
Multiply 0 by 2.
k=0:2√212cis(π4+0π2)
Step 9.6.2
Multiply 0 by π.
k=0:2√212cis(π4+02)
k=0:2√212cis(π4+02)
Step 9.7
Add π4 and 0.
k=0:2√212cis(π42)
Step 9.8
Multiply the numerator by the reciprocal of the denominator.
k=0:2√212cis(π4⋅12)
Step 9.9
Multiply π4⋅12.
Step 9.9.1
Multiply π4 by 12.
k=0:2√212cis(π4⋅2)
Step 9.9.2
Multiply 4 by 2.
k=0:2√212cis(π8)
k=0:2√212cis(π8)
k=0:2√212cis(π8)
Step 10
Step 10.1
Apply the product rule to 4√2.
k=1:412√212cis((π4)+2π(1)2)
Step 10.2
Rewrite 4 as 22.
k=1:(22)12√212cis((π4)+2π(1)2)
Step 10.3
Apply the power rule and multiply exponents, (am)n=amn.
k=1:22(12)√212cis((π4)+2π(1)2)
Step 10.4
Cancel the common factor of 2.
Step 10.4.1
Cancel the common factor.
k=1:22(12)√212cis((π4)+2π(1)2)
Step 10.4.2
Rewrite the expression.
k=1:2√212cis((π4)+2π(1)2)
k=1:2√212cis((π4)+2π(1)2)
Step 10.5
Evaluate the exponent.
k=1:2√212cis((π4)+2π(1)2)
Step 10.6
Multiply 2 by 1.
k=1:2√212cis(π4+2π2)
Step 10.7
To write 2π as a fraction with a common denominator, multiply by 44.
k=1:2√212cis(π4+2π⋅442)
Step 10.8
Combine 2π and 44.
k=1:2√212cis(π4+2π⋅442)
Step 10.9
Combine the numerators over the common denominator.
k=1:2√212cis(π+2π⋅442)
Step 10.10
Simplify the numerator.
Step 10.10.1
Multiply 4 by 2.
k=1:2√212cis(π+8π42)
Step 10.10.2
Add π and 8π.
k=1:2√212cis(9π42)
k=1:2√212cis(9π42)
Step 10.11
Multiply the numerator by the reciprocal of the denominator.
k=1:2√212cis(9π4⋅12)
Step 10.12
Multiply 9π4⋅12.
Step 10.12.1
Multiply 9π4 by 12.
k=1:2√212cis(9π4⋅2)
Step 10.12.2
Multiply 4 by 2.
k=1:2√212cis(9π8)
k=1:2√212cis(9π8)
k=1:2√212cis(9π8)
Step 11
List the solutions.
k=0:2√212cis(π8)
k=1:2√212cis(9π8)